Oracles and Turing Equivalence

The Structure of \mathcal{D}

A Taste of Recursion Theory

Aiden Sagerman

August 2021

Aiden Sagerman A Taste of Recursion Theory <ロト < 回 > < 臣 > < 臣 > 、 臣 、 の < @

Table of Contents

2 Constructing an Uncomputable Set

3 Oracles and Turing Equivalence

4 The Structure of \mathcal{D}

・ロト・西ト・西ト・西ト・日・ つんの

Preliminaries
•0000000000

Oracles and Turing Equivalence

The Structure of \mathcal{D}

Recursive Sets

Notation

We write ω for the set of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$.

<ロ> <回> <回> <目> <目> <回> <回> <回> <回> <回> <回> <回> <回</p>

Recursive Sets

Notation

We write ω for the set of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$.

Definition (Recursive Sets and Functions)

We say a set $A \subseteq \omega$ is *recursive* or *computable* if there exists an algorithm which always terminates and which determines whether $x \in A$ for any $x \in \omega$.

Recursive Sets and the Church-Turing Thesis

Remark

The Church-Turing thesis, which we discussed last week, tells us that a function is recursive when it can be computed by a Turing machine.

Since any reasonable programming language is Turing complete, we can treat recursive sets as "sets which can be computed by a computer program" and recursive functions as "functions which can be computer by a computer program."

Preliminaries

Oracles and Turing Equivalence

3

イロン イ団 と イヨン イヨン

Programs

Definition (Programs)

Let $\mathcal{L} = \{a, b, c, \dots, z, ., :, \dots$, new line}. A *program* is a string $P \in \mathcal{L}^{<\omega}$ such that P compiles in your chosen language.

Preliminaries

Programs

Definition (Programs)

Let $\mathcal{L} = \{a, b, c, \dots, z, ., :, \dots$, new line}. A *program* is a string $P \in \mathcal{L}^{<\omega}$ such that P compiles in your chosen language.

We will also suppose the following:

- **1** Every program takes an input $a \in \omega$
- **2** There is a function **output** which returns an output in ω .
- If a program P halts but does not return an output, say it outputs 0.

Preliminaries
000000000000000000000000000000000000000

Oracles and Turing Equivalence

Programs

Examples

1 input xoutput x + 5

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Preliminaries

The Structure of \mathcal{D}

Programs

Examples 1 input xoutput x + 52 input xif x = 1: output 1

output 37

else:

Preliminaries

The Structure of \mathcal{D}

Programs

Examples
1 input x output $x + 5$
<pre>2 input x if x = 1: output 1 else: output 37</pre>
3 input x while $x \ge 0$: x = x + 1

Constructing an Uncomputable Set

Oracles and Turing Equivalence

Indices for Programs

Proposition

There are countably many programs.

3

Indices for Programs

Proposition

There are countably many programs.

Proof.

We know that $\mathcal{L}^{<\omega}$ is countable, as it is a countable union of the finite sets $\mathcal{L}, \mathcal{L}^2, \ldots$. Since the set of programs is contained in $\mathcal{L}^{<\omega}$, it is countable as well.

Indices for Programs

Notation

Since there are countably many programs, we may write them P_0, P_1, P_2, \ldots

Definition

Let $\{e\}$ denote the function which maps an input x to the first output call given by the program P_e (or 0, if P_e terminates but does not give an output). If $\{e\}$ converges on an input x, we write $\{e\}(x) \downarrow$. If we want to specify that $\{e\}$ converges to y on an input x, we write $\{e\}(x) \downarrow = y$.

3

Indices for Programs

Warning

```
Since programs do not necessarily terminate, \{e\} does not
necessarily have domain \omega. For example, let P_e denote the program
input x
while x \ge 0:
Since P_e terminates for no inputs, the domain of \{e\} is \emptyset.
If a program P_e does not terminate—that is, diverges—on an input
x, we write \{e\}(x) \uparrow
```

Oracles and Turing Equivalence

Computable Sets

Definition (Computable Sets, again)

A set $A \subseteq \omega$ is computable if there exists some $e \in \omega$ such that $\{e\}(x) = 1$ iff $x \in A$ and $\{e\}(x) = 0$ otherwise.

Aiden Sagerman A Taste of Recursion Theory ▲ロト▲団ト▲臣ト▲臣ト 臣 のなぐ

Oracles and Turing Equivalence

The Structure of \mathcal{D}

Examples of Computable Sets

Example

Question: Is the set $\{1, 2, 3\}$ computable?

<ロ> <回> <回> <目> <目> <回> <回> <回> <回> <回> <回> <回> <回</p>

The Structure of \mathcal{D}

Examples of Computable Sets

Example

```
Question: Is the set \{1, 2, 3\} computable?
Answer: It is. Consider the following program:
input x
if x = 1 or x = 2 or x = 3:
output 1
else:
output 0
```

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■ めるの

Oracles and Turing Equivalence

The Structure of \mathcal{D}

Examples of Computable Sets

Example

Question: Is the set of even natural numbers computable?

Aiden Sagerman A Taste of Recursion Theory イロト イヨト イヨト イヨト

The Structure of \mathcal{D}

3

Examples of Computable Sets

Example

```
Question: Is the set of even natural numbers computable?
Answer: It is. Consider the following program:
input x
for y < x:
if 2y = x:
output 1
else:
output 0
```

Examples of Computable Sets

Example

Other computable sets include:

- **1** Any finite or cofinite set.
- **2** ω and \emptyset .
- 3 The set of prime numbers.
- 4 The complement of any computable set.

Examples of Computable Sets

Example

Other computable sets include:

- **1** Any finite or cofinite set.
- **2** ω and \emptyset .
- 3 The set of prime numbers.
- 4 The complement of any computable set.

Remark

The vast majority of the sets we care about in mathematics are computable.

Constructing an Uncomputable Set ••••••• Oracles and Turing Equivalence

Uncomputable Sets

Proposition

Almost all sets of natural numbers are uncomputable.

イロト イポト イヨト イヨト

Uncomputable Sets

Proposition

Almost all sets of natural numbers are uncomputable.

Proof.

We know from a variation of Cantor's diagonal argument that the there are uncountably many subsets of ω . But we have already shown that there are countably many programs P_e , so there are only countably many $A \subseteq \omega$ such that A is computed by P_e .

Oracles and Turing Equivalence

The Halting Problem

Theorem

Define a set $K \subseteq \omega$ by

$$K = \{e \in \omega : \{e\}(e) \downarrow\}$$

That is, K is the list of indices e such that the eth program P_e converges on the input e. Then K is not computable.

This is called the halting problem. A version of this result was proved independently by both Alonzo Church and Alan Turing in 1936.

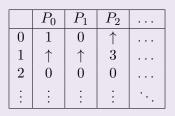
Constructing an Uncomputable Set 0000000

Oracles and Turing Equivalence

The Structure of \mathcal{D}

The Halting Problem

Proof Sketch.



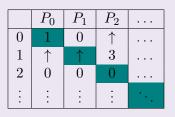
Aiden Sagerman A Taste of Recursion Theory Constructing an Uncomputable Set 0000000

Oracles and Turing Equivalence

The Structure of \mathcal{D}

The Halting Problem

Proof Sketch.



・ロト・日本・ 日本・ 日本・ うんの

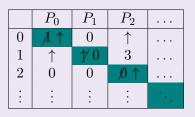
Constructing an Uncomputable Set 0000000

Oracles and Turing Equivalence

The Structure of \mathcal{D}

The Halting Problem

Proof Sketch.



Aiden Sagerman A Taste of Recursion Theory <ロト < 回 > < 臣 > < 臣 > 、 臣 、 の < @

Constructing an Uncomputable Set 000000

Oracles and Turing Equivalence

イロン イヨン イヨン イヨン

Ξ.

The Halting Problem

Proof.

Suppose K is computable by a program P_e . Then we can define the following program:

The Structure of \mathcal{D}

The Halting Problem

Proof.

Suppose K is computable by a program P_e . Then we can define the following program: input x run P_e on x if P_e outputs 0: output 1 if P_e outputs 1 diverge

The Halting Problem

Proof.

```
Suppose K is computable by a program P_e. Then we can define the following program:

input x

run P_e on x

if P_e outputs 0:

output 1

if P_e outputs 1

diverge

Call the above program P_f. Is f \in K?
```

The Halting Problem

Proof.

First suppose $f \notin K$. Then $\{f\}(f)$ diverges, which happens only when P_e outputs 1 with the input f. But this is the same as saying $f \in K$, which is a contradiction. Now suppose $f \in K$. This means that $\{f\}(f)$ converges, which happens when P_e outputs 0 with the input f. But this is the same as saying $f \notin K$, which is a contradiction.

・ロト・西・・川下・ 日・ うくぐ

・ロト ・四ト ・ヨト ・ヨト

3

Relative Computability

Notice our program P_f is essentially computing the set

$$D = \{e \in \omega : \{e\}(e) \uparrow\} = \omega \setminus K$$

We did this assuming that we could black box a program P_e which computed K. Can we formalize the idea of computing one uncomputable set from another?

Relative Computability

Question:

Can every uncomputable set be "computed from" every other uncomputable set?

Aiden Sagerman A Taste of Recursion Theory

Relative Computability

Question:

Can every uncomputable set be "computed from" every other uncomputable set?

Answer

No, they cannot.

To see this, we first need to define what it means to be "computed from" another set.

Preliminaries

Oracles and Turing Equivalence

Oracles

Definition

As before, let $\mathcal{L} = \{a, b, c, \dots, z, ., :, \dots, \text{new line}\}$ be our set of symbols. We will add a new function $\operatorname{orc}(x)$, called an *oracle*, to our language. Formally, define $f' = f + \{\operatorname{orc}(x)\}$. Our programs will now

Formally, define $\mathcal{L}' = \mathcal{L} \cup \{ \operatorname{orc}(x) \}$. Our programs will now instead be elements of $\mathcal{L}'^{<\omega}$ which compile in our chosen language. When the compiler encounters the $\operatorname{orc}(x)$ function, the function will return either 0 or 1.

Preliminaries

Oracles

Definition

As before, let $\mathcal{L} = \{a, b, c, \dots, z, ., :, \dots, \text{new line}\}$ be our set of symbols. We will add a new function $\operatorname{orc}(x)$, called an *oracle*, to our language.

Formally, define $\mathcal{L}' = \mathcal{L} \cup \{ \operatorname{orc}(x) \}$. Our programs will now instead be elements of $\mathcal{L}'^{<\omega}$ which compile in our chosen language. When the compiler encounters the $\operatorname{orc}(x)$ function, the function will return either 0 or 1.

Remark

We can still define countably many programs P_0, P_1, \ldots , but this will now be a slightly different list due to orc.

Aiden Sagerman

A Taste of Recursion Theory

Preliminaries

Constructing an Uncomputable Set

Oracles and Turing Equivalence

Oracles

Definition

Let $A, B \subseteq \omega$. We say that A is relatively computable from B or Turing reducible to B if there exists a program P_e such that P_e computes A, assuming that the oracle correctly answers questions about membership in B. The function given by a program P_e which has an oracle that answers questions about a set B is written $\{e\}^B$. Then A is computable from B when there exists some $e \in \omega$ such that $\{e\}^B$ is the characteristic function for A.

Preliminaries

Constructing an Uncomputable Set

Oracles and Turing Equivalence

Oracles

Definition

Let $A, B \subseteq \omega$. We say that A is relatively computable from B or Turing reducible to B if there exists a program P_e such that P_e computes A, assuming that the oracle correctly answers questions about membership in B. The function given by a program P_e which has an oracle that answers questions about a set B is written $\{e\}^B$. Then A is computable from B when there exists some $e \in \omega$ such that $\{e\}^B$ is the characteristic function for A.

This is a little complicated, so let's look at an example.

イロト イボト イヨト イヨト

Oracle Examples

Example

Let K and D as before. We will show that D is Turing reducible to K (that is, relatively computable from K). Define a program P_e as follows: input x if $\operatorname{orc}(x) = 1$: output 0 else: output 1 Now, what this program does depends on orc. But if the oracle answers questions about K—that is, if $\operatorname{orc}(x) = 1$ when $x \in K$ and $\operatorname{orc}(x) = 0$ when $x \notin K$ —then this program will compute D.

イロト イヨト イヨト イヨト

More Oracle Examples

Examples

Every recursive set is Turing reducible to every other recursive set, as they can be computed without ever calling the oracle.

More Oracle Examples

Examples

- Every recursive set is Turing reducible to every other recursive set, as they can be computed without ever calling the oracle.
- Every recursive set is Turing reducible to K, as they can be computed without calling the oracle. (In fact, they're Turing reducible to every set for the same reason.)

More Oracle Examples

Examples

- Every recursive set is Turing reducible to every other recursive set, as they can be computed without ever calling the oracle.
- Every recursive set is Turing reducible to K, as they can be computed without calling the oracle. (In fact, they're Turing reducible to every set for the same reason.)
- B However, K is not reducible to any recursive set. Since this one is a little complicated, we will prove it separately.

More Oracle Examples

Proof.

Suppose we could compute K from a recursive set A. This means that there exists a problem P_e which computes K with A in the oracle (or $\{e\}^A = K$, if we identify K with its characteristic function).

More Oracle Examples

Proof.

Suppose we could compute K from a recursive set A. This means that there exists a problem P_e which computes K with A in the oracle (or $\{e\}^A = K$, if we identify K with its characteristic function).

Since A is recursive, there exists a program P_f such that P_f computes A. But this means that P_f acts exactly the same as an oracle that answers questions about A. Then we can define a new program $P_{e'}$ which is exactly the same as P_e , but which replaced every call to the oracle with running P_f . Then $P_{e'}$ would compute K, so K is recursive, which is a contradiction.

Turing Equivalence

Notation

If A is Turing reducible to B, we write $A \leq_T B$. If $A \leq_T B$ and $B \leq_T A$, we write $A \equiv_T B$.

< 日> < 四> < 三> < 三> < 三>

3

イロン イヨン イヨン イヨン

Turing Equivalence

Notation

If A is Turing reducible to B, we write $A \leq_T B$. If $A \leq_T B$ and $B \leq_T A$, we write $A \equiv_T B$.

Theorem

The relation \equiv_T is an equivalence relation on $\mathcal{P}(\omega)$.

Turing Equivalence

Proof.

Reflexivity and symmetry are left as an excercise.

<ロ> <回> <回> <三> <三> <三> <三> <三</p>

Turing Equivalence

Proof.

Reflexivity and symmetry are left as an excercise. To see transitivity, suppose $A \leq_T B$ and $B \leq_T C$. This means there is a program P_e that computes A when the oracle answers questions about B, and a program P_f that computes B when the oracle answers questions about C.

Turing Equivalence

Proof.

Reflexivity and symmetry are left as an excercise.

To see transitivity, suppose $A \leq_T B$ and $B \leq_T C$. This means there is a program P_e that computes A when the oracle answers questions about B, and a program P_f that computes B when the oracle answers questions about C.

Suppose the oracle answers questions about C. Then the program P_f tells us whether something is in B or not—that is, it functions exactly like an oracle that answers questions about B.

Turing Equivalence

Proof.

Reflexivity and symmetry are left as an excercise.

To see transitivity, suppose $A \leq_T B$ and $B \leq_T C$. This means there is a program P_e that computes A when the oracle answers questions about B, and a program P_f that computes B when the oracle answers questions about C.

Suppose the oracle answers questions about C. Then the program P_f tells us whether something is in B or not—that is, it functions exactly like an oracle that answers questions about B.

Thus take P_e and define a new program $P_{e'}$ which is exactly P_e , but which replaces every instance of $\operatorname{orc}(x)$ with P_f run on input x. Then $P_{e'}$ computes A.

Turing Equivalence

Corollary

The set $\mathcal{D} = \mathcal{P}(\omega) / \equiv_T$ is well-defined, and (\mathcal{D}, \leq_T) is a partially ordered set. We call \mathcal{D} the set of Turing degrees, and each element $\mathbf{a} \in \mathcal{D}$ a Turing degree.

Constructing an Uncomputable Set

Oracles and Turing Equivalence

The Structure of \mathcal{D}

What Do We Know About \mathcal{D} ?

What do we know about \mathcal{D} ?

<ロト <回ト < 三ト < 三ト

э

What Do We Know About \mathcal{D} ?

What do we know about \mathcal{D} ?

1 We know that if A and B are recursive sets, $A \equiv_T B$, so \mathcal{D} has at least one degree. We call the degree that contains the recursive sets **0**.

イロト イヨト イヨト イヨト

э

What Do We Know About \mathcal{D} ?

What do we know about \mathcal{D} ?

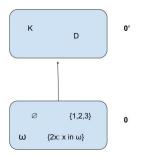
- **1** We know that if A and B are recursive sets, $A \equiv_T B$, so \mathcal{D} has at least one degree. We call the degree that contains the recursive sets **0**.
- 2 We know that $K \ge_T A$ for any recursive A, but $K \not\equiv_T A$. Then there must be at least one other Turing degree, which is called $\mathbf{0}'$, and which satisfies $\mathbf{0} \le_T \mathbf{0}'$.

Constructing an Uncomputable Set

Oracles and Turing Equivalence

The Structure of \mathcal{D}

What Do We Know About \mathcal{D} ?



The Structure of \mathcal{D}

What Do We Know About \mathcal{D} ?

What do we *not* know about \mathcal{D} ?

<ロト < 回 > < 臣 > < 臣 > 三臣 の Q ()

What Do We Know About \mathcal{D} ?

What do we *not* know about \mathcal{D} ?

1 Is \mathcal{D} finite or infinite? Countable or uncountable?

▲ロト▲圖ト▲目ト▲目ト 目 のえの

э.

What Do We Know About \mathcal{D} ?

What do we *not* know about \mathcal{D} ?

- **1** Is \mathcal{D} finite or infinite? Countable or uncountable?
- 2 Is \mathcal{D} totally ordered (for every $\mathbf{a}, \mathbf{b} \in \mathcal{D}$, either $\mathbf{a} \leq_T \mathbf{b}$ or $\mathbf{b} \leq_T \mathbf{a}$)? What about well-ordered?

What Do We Know About \mathcal{D} ?

What do we *not* know about \mathcal{D} ?

- **1** Is \mathcal{D} finite or infinite? Countable or uncountable?
- 2 Is \mathcal{D} totally ordered (for every $\mathbf{a}, \mathbf{b} \in \mathcal{D}$, either $\mathbf{a} \leq_T \mathbf{b}$ or $\mathbf{b} \leq_T \mathbf{a}$)? What about well-ordered?
- 3 If \mathcal{D} is not totally ordered, how many incomparable elements are there?

What Do We Know About \mathcal{D} ?

What do we *not* know about \mathcal{D} ?

- **1** Is \mathcal{D} finite or infinite? Countable or uncountable?
- 2 Is \mathcal{D} totally ordered (for every $\mathbf{a}, \mathbf{b} \in \mathcal{D}$, either $\mathbf{a} \leq_T \mathbf{b}$ or $\mathbf{b} \leq_T \mathbf{a}$)? What about well-ordered?
- 3 If \mathcal{D} is not totally ordered, how many incomparable elements are there?
- 4 Is \mathcal{D} dense? If not, are there minimal elements (above 0)?

The Jump Operator

Definition

Given $A \subseteq \omega$, the *jump* of A, written A', is the set $\{e \in \omega : \{e\}^A(e) \downarrow\}$. Note that K from before is in fact \emptyset' .

▲口▼▲□▼▲目▼▲目▼ 目 のへで

The Jump Operator

Definition

Given $A \subseteq \omega$, the *jump* of A, written A', is the set $\{e \in \omega : \{e\}^A(e) \downarrow\}$. Note that K from before is in fact \emptyset' .

Theorem

The jump operator is well-defined on degrees. That is, if $A, B \in \mathbf{a}$, then $A' \equiv_T B'$.

A Taste of Recursion Theory

Aiden Sagerman

The Jump Operator

Definition

Given $A \subseteq \omega$, the *jump* of A, written A', is the set $\{e \in \omega : \{e\}^A(e) \downarrow\}$. Note that K from before is in fact \emptyset' .

Theorem

The jump operator is well-defined on degrees. That is, if $A, B \in \mathbf{a}$, then $A' \equiv_T B'$.

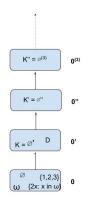
This means that we can generate infinitely many degrees by taking $0,0^\prime,0^{\prime\prime},\ldots$.

Constructing an Uncomputable Set

Oracles and Turing Equivalence

The Structure of \mathcal{D}

The Jump Operator



) E ୬ ୦ ୦ ୦

イロト イヨト イヨト イヨト

The Structure of \mathcal{D}

3

Incomparable Degrees

Theorem

There exist two incomparable degrees. That is, there exist two degrees $\mathbf{a}, \mathbf{b} \in \mathcal{D}$ such that $\mathbf{a} \not\leq_T \mathbf{b}$ and $\mathbf{b} \not\leq_T \mathbf{a}$.

Incomparable Degrees

Theorem

There exist two incomparable degrees. That is, there exist two degrees $\mathbf{a}, \mathbf{b} \in \mathcal{D}$ such that $\mathbf{a} \not\leq_T \mathbf{b}$ and $\mathbf{b} \not\leq_T \mathbf{a}$.

Remark

It is sufficient to show that there are two sets $A, B \subseteq \omega$ such that $A \not\leq_T B$ and $A \not\leq_T B$. This is equivalent to saying that for each program P_e , P_e doesn't compute A from B or B from A.

Incomparable Degrees

Theorem

There exist two incomparable degrees. That is, there exist two degrees $\mathbf{a}, \mathbf{b} \in \mathcal{D}$ such that $\mathbf{a} \not\leq_T \mathbf{b}$ and $\mathbf{b} \not\leq_T \mathbf{a}$.

Remark

It is sufficient to show that there are two sets $A, B \subseteq \omega$ such that $A \not\leq_T B$ and $A \not\leq_T B$. This is equivalent to saying that for each program P_e , P_e doesn't compute A from B or B from A. We can think of this as two lists of infinitely many requirements that A and B have to satisfy:

1
$$R_e: A \neq \{e\}^B$$

2 $R'_e: B \neq \{e\}^A$

Aiden Sagerman

Constructing an Uncomputable Set

Oracles and Turing Equivalence

Incomparable Degrees

Proof Sketch.

	0	1	2	
A_0	0	0	0	
B_0	0	0	0	

Aiden Sagerman A Taste of Recursion Theory <ロト < 回 > < 臣 > < 臣 > 、 臣 、 の < @

Constructing an Uncomputable Set

Oracles and Turing Equivalence

・ロト ・四ト ・ヨト ・ヨト

The Structure of \mathcal{D}

3

Incomparable Degrees

Proof Sketch.

	0	1	2	
A_0	0	0	0	
B_0	0	0	0	

Is there some finite set $\sigma \supseteq B_0$ such that $\{0\}^{\sigma}(0) = 1$ or 0?

Preliminaries 00000000000 Constructing an Uncomputable Set

Oracles and Turing Equivalence

イロト イロト イヨト イヨト

The Structure of \mathcal{D}

3

Incomparable Degrees

Proof Sketch.

If yes, we make sure A_1 does the opposite, and make B_1 into that $\sigma.$

Incomparable Degrees

Proof Sketch.

If yes, we make sure A_1 does the opposite, and make B_1 into that σ . For example, let's say that $\sigma = \{0, 2\}$, and it converges to 0. Then

we a	lter	A_0 .	
------	------	---------	--

	0	1	2	
A_1	1	0	0	
B_1	1	0	1	

This ensures that P_1 won't compute the if $0 \in A$ correctly from B.

Preliminaries

Constructing an Uncomputable Set

Oracles and Turing Equivalence

The Structure of \mathcal{D}

Incomparable Degrees

Proof Sketch.

If not, it doesn't matter, and we can just leave A_1 and B_1 as is.

▲ロト▲圖ト▲目ト▲目ト 目 のへの

Incomparable Degrees

Proof Sketch.

If not, it doesn't matter, and we can just leave A_1 and B_1 as is.

	0	1	2	
A_1	0	0	0	
B_1	0	0	0	

This is because nothing we could possibly do to B will allow P_0 to compute if $0 \in A$.

Incomparable Degrees

Proof Sketch.

Then we look at B_1 , and do the same thing!

	0	1	2	3	
A_1	1	0	0	0	
B_1	1	0	1	0	

Assuming the first case, the first unused element of B is 3, so we would ask: Is there some finite set $\sigma \supseteq A_1$ such that $\{0\}^{\sigma}(3) = 1$ or 0?

By looking at the answers to these two questions, we're ensuring R_0 and R'_0 .

Incomparable Degrees

Proof.

We will build our sets in stages. At each stage, we start with two finite sets A_s and B_s , and extend them to A_{s+1} and B_{s+1} . On stage s + 1, we will make sure R_s and R'_s are satisfied.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ○ ○ ○ ○ ○

イロト イヨト イヨト イヨト

3

Incomparable Degrees

Proof.

We will build our sets in stages. At each stage, we start with two finite sets A_s and B_s , and extend them to A_{s+1} and B_{s+1} . On stage s + 1, we will make sure R_s and R'_s are satisfied.

1 Start with
$$A_0 = B_0 = \emptyset$$
.

Incomparable Degrees

Proof.

We will build our sets in stages. At each stage, we start with two finite sets A_s and B_s , and extend them to A_{s+1} and B_{s+1} . On stage s + 1, we will make sure R_s and R'_s are satisfied.

1 Start with
$$A_0 = B_0 = \emptyset$$
.

2 Suppose we are on stage s + 1. Let x_{s+1} denote the first number not yet added to A_s. Then we ask the question: "Does there exist some set σ such that B_s ⊆ σ and {s}^σ(x_{s+1}) ↓ to 1 or 0?"

イロト イヨト イヨト イヨト

3

Incomparable Degrees

Proof.

2 If the answer to the question is "yes," then we can make $B_{s+1} = \sigma$, and extend A_s with either 0 if it converges to 1 or 1 otherwise.

イロト イヨト イヨト イヨト

3

Incomparable Degrees

Proof.

- 2 If the answer to the question is "yes," then we can make $B_{s+1} = \sigma$, and extend A_s with either 0 if it converges to 1 or 1 otherwise.
- 3 Then we do the exact same process, but exchanging the role of A_s and B_s .

Incomparable Degrees

Proof.

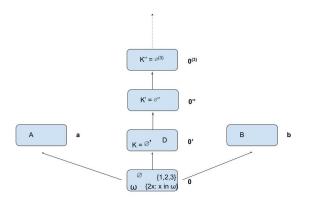
- 2 If the answer to the question is "yes," then we can make $B_{s+1} = \sigma$, and extend A_s with either 0 if it converges to 1 or 1 otherwise.
- 3 Then we do the exact same process, but exchanging the role of A_s and B_s .

Since we ensured R_0 and R'_0 on step 1, R_1 and R'_1 on step 2,..., we know that A and B will be incomparable!

Constructing an Uncomputable Set

Oracles and Turing Equivalence

Incomparable Degrees



► Ξ • • • • •

Other Structure Results

Using similar (and sometimes more complicated) tools, we can show the following:

- 1 For any degree $\mathbf{a} >_T \mathbf{0}$, there is a $\mathbf{b} \in \mathcal{D}$ such that \mathbf{a} and \mathbf{b} are incomparable.
- 2 There are minimal degrees—that is, degrees $\mathbf{a} \in \mathcal{D}$ such that there exist no \mathbf{b} with $\mathbf{0} <_T \mathbf{b} <_T \mathbf{a}$.
- 3 For any degree $\mathbf{b} >_T \mathbf{0}'$, there exists a degree \mathbf{a} such that $\mathbf{a}' = \mathbf{b}$.
- **4** There exists a set of 2^{\aleph_0} incomparable degrees.

Preliminaries	Constructing an l

э.

References

Horowitz, Jason. *Recursion Theory*, lecture notes, Proof School, delivered May and June 2020. Kunen, Kenneth. *The Foundations of Mathematics*. College Publications, 2009.