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Recursive Sets

Notation

We write ω for the set of natural numbers N = {0, 1, 2, . . . }.

Definition (Recursive Sets and Functions)

We say a set A ⊆ ω is recursive or computable if there exists an
algorithm which always terminates and which determines whether
x ∈ A for any x ∈ ω.
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Recursive Sets and the Church-Turing Thesis

Remark

The Church-Turing thesis, which we discussed last week, tells us
that a function is recursive when it can be computed by a Turing
machine.
Since any reasonable programming language is Turing complete,
we can treat recursive sets as “sets which can be computed by a
computer program” and recursive functions as “functions which
can be computer by a computer program.”
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Programs

Definition (Programs)

Let L = {a, b, c, . . . , z, ., :, . . . , new line}. A program is a string
P ∈ L<ω such that P compiles in your chosen language.

We will also suppose the following:

1 Every program takes an input a ∈ ω
2 There is a function output which returns an output in ω.

3 If a program P halts but does not return an output, say it
outputs 0.
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Programs

Examples

1 input x
output x+ 5

2 input x
if x = 1:
output 1

else:

output 37

3 input x
while x ≥ 0 :

x = x+ 1
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Indices for Programs

Proposition

There are countably many programs.

Proof.

We know that L<ω is countable, as it is a countable union of the
finite sets L,L2, . . . . Since the set of programs is contained in
L<ω, it is countable as well.
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Indices for Programs

Notation

Since there are countably many programs, we may write them
P0, P1, P2, . . . .

Definition

Let {e} denote the function which maps an input x to the first
output call given by the program Pe (or 0, if Pe terminates but
does not give an output).
If {e} converges on an input x, we write {e}(x) ↓. If we want to
specify that {e} converges to y on an input x, we write
{e}(x) ↓= y.
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Indices for Programs

Warning

Since programs do not necessarily terminate, {e} does not
necessarily have domain ω. For example, let Pe denote the program
input x
while x ≥ 0 :
Since Pe terminates for no inputs, the domain of {e} is ∅.
If a program Pe does not terminate—that is, diverges—on an input
x, we write {e}(x) ↑
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Computable Sets

Definition (Computable Sets, again)

A set A ⊆ ω is computable if there exists some e ∈ ω such that
{e}(x) = 1 iff x ∈ A and {e}(x) = 0 otherwise.
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Examples of Computable Sets

Example

Question: Is the set {1, 2, 3} computable?

Answer: It is. Consider the following program:
input x
if x = 1 or x = 2 or x = 3 :
output 1

else:

output 0
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Examples of Computable Sets

Example

Question: Is the set of even natural numbers computable?

Answer: It is. Consider the following program:
input x
for y < x :
if 2y = x :
output 1

else:

output 0
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Examples of Computable Sets

Example

Other computable sets include:

1 Any finite or cofinite set.

2 ω and ∅.
3 The set of prime numbers.

4 The complement of any computable set.

Remark

The vast majority of the sets we care about in mathematics are
computable.
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Uncomputable Sets

Proposition

Almost all sets of natural numbers are uncomputable.

Proof.

We know from a variation of Cantor’s diagonal argument that the
there are uncountably many subsets of ω. But we have already
shown that there are countably many programs Pe, so there are
only countably many A ⊆ ω such that A is computed by Pe.
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The Halting Problem

Theorem

Define a set K ⊆ ω by

K = {e ∈ ω : {e}(e) ↓}

That is, K is the list of indices e such that the eth program Pe
converges on the input e. Then K is not computable.

This is called the halting problem. A version of this result was
proved independently by both Alonzo Church and Alan Turing in
1936.
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The Halting Problem

Proof Sketch.

P0 P1 P2 . . .

0 1 0 ↑ . . .
1 ↑ ↑ 3 . . .
2 0 0 0 . . .
...

...
...

...
. . .
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The Halting Problem

Proof Sketch.

P0 P1 P2 . . .

0 6 1 ↑ 0 ↑ . . .
1 ↑ 6↑ 0 3 . . .
2 0 0 6 0 ↑ . . .
...

...
...

...
. . .
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The Halting Problem

Proof.

Suppose K is computable by a program Pe. Then we can define
the following program:

input x
run Pe on x
if Pe outputs 0:
output 1

if Pe outputs 1
diverge

Call the above program Pf . Is f ∈ K?
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The Halting Problem

Proof.

First suppose f /∈ K. Then {f}(f) diverges, which happens only
when Pe outputs 1 with the input f . But this is the same as saying
f ∈ K, which is a contradiction.
Now suppose f ∈ K. This means that {f}(f) converges, which
happens when Pe outputs 0 with the input f . But this is the same
as saying f /∈ K, which is a contradiction.
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Relative Computability

Notice our program Pf is essentially computing the set

D = {e ∈ ω : {e}(e) ↑} = ω \K

We did this assuming that we could black box a program Pe which
computed K. Can we formalize the idea of computing one
uncomputable set from another?
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Relative Computability

Question:

Can every uncomputable set be “computed from” every other
uncomputable set?

Answer

No, they cannot.

To see this, we first need to define what it means to be “computed
from” another set.
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Oracles

Definition

As before, let L = {a, b, c, . . . , z, ., :, . . . , new line} be our set of
symbols. We will add a new function orc(x), called an oracle, to
our language.
Formally, define L′ = L ∪ {orc(x)}. Our programs will now
instead be elements of L′<ω which compile in our chosen language.
When the compiler encounters the orc(x) function, the function
will return either 0 or 1.

Remark

We can still define countably many programs P0, P1, . . . , but this
will now be a slightly different list due to orc.
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Oracles

Definition

Let A,B ⊆ ω. We say that A is relatively computable from B or
Turing reducible to B if there exists a program Pe such that Pe
computes A, assuming that the oracle correctly answers questions
about membership in B.
The function given by a program Pe which has an oracle that
answers questions about a set B is written {e}B. Then A is
computable from B when there exists some e ∈ ω such that {e}B
is the characteristic function for A.

This is a little complicated, so let’s look at an example.
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Oracle Examples

Example

Let K and D as before. We will show that D is Turing reducible
to K (that is, relatively computable from K). Define a program
Pe as follows:
input x
if orc(x) = 1:
output 0

else:

output 1
Now, what this program does depends on orc. But if the oracle
answers questions about K—that is, if orc(x) = 1 when x ∈ K
and orc(x) = 0 when x /∈ K—then this program will compute D.
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More Oracle Examples

Examples

1 Every recursive set is Turing reducible to every other recursive
set, as they can be computed without ever calling the oracle.

2 Every recursive set is Turing reducible to K, as they can be
computed without calling the oracle. (In fact, they’re Turing
reducible to every set for the same reason.)

3 However, K is not reducible to any recursive set. Since this
one is a little complicated, we will prove it separately.
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More Oracle Examples

Proof.

Suppose we could compute K from a recursive set A. This means
that there exists a problem Pe which computes K with A in the
oracle (or {e}A = K, if we identify K with its characteristic
function).

Since A is recursive, there exists a program Pf such that Pf
computes A. But this means that Pf acts exactly the same as an
oracle that answers questions about A. Then we can define a new
program Pe′ which is exactly the same as Pe, but which replaced
every call to the oracle with running Pf . Then Pe′ would compute
K, so K is recursive, which is a contradiction.
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Turing Equivalence

Notation

If A is Turing reducible to B, we write A ≤T B.
If A ≤T B and B ≤T A, we write A ≡T B.

Theorem

The relation ≡T is an equivalence relation on P(ω).
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Turing Equivalence

Proof.

Reflexivity and symmetry are left as an excercise.

To see transitivity, suppose A ≤T B and B ≤T C. This means
there is a program Pe that computes A when the oracle answers
questions about B, and a program Pf that computes B when the
oracle answers questions about C.
Suppose the oracle answers questions about C. Then the program
Pf tells us whether something is in B or not—that is, it functions
exactly like an oracle that answers questions about B.
Thus take Pe and define a new program Pe′ which is exactly Pe,
but which replaces every instance of orc(x) with Pf run on input
x. Then Pe′ computes A.
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Turing Equivalence

Corollary

The set D = P(ω)/ ≡T is well-defined, and (D,≤T ) is a partially
ordered set.
We call D the set of Turing degrees, and each element a ∈ D a
Turing degree.
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What Do We Know About D?

What do we know about D?

1 We know that if A and B are recursive sets, A ≡T B, so D
has at least one degree. We call the degree that contains the
recursive sets 0.

2 We know that K ≥T A for any recursive A, but K 6≡T A.
Then there must be at least one other Turing degree, which is
called 0′, and which satisfies 0 ≤T 0′.
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What Do We Know About D?

What do we not know about D?

1 Is D finite or infinite? Countable or uncountable?

2 Is D totally ordered (for every a,b ∈ D, either a ≤T b or
b ≤T a)? What about well-ordered?

3 If D is not totally ordered, how many incomparable elements
are there?

4 Is D dense? If not, are there minimal elements (above 0)?

Aiden Sagerman

A Taste of Recursion Theory



Preliminaries Constructing an Uncomputable Set Oracles and Turing Equivalence The Structure of D

What Do We Know About D?

What do we not know about D?

1 Is D finite or infinite? Countable or uncountable?

2 Is D totally ordered (for every a,b ∈ D, either a ≤T b or
b ≤T a)? What about well-ordered?

3 If D is not totally ordered, how many incomparable elements
are there?

4 Is D dense? If not, are there minimal elements (above 0)?

Aiden Sagerman

A Taste of Recursion Theory



Preliminaries Constructing an Uncomputable Set Oracles and Turing Equivalence The Structure of D

What Do We Know About D?

What do we not know about D?

1 Is D finite or infinite? Countable or uncountable?

2 Is D totally ordered (for every a,b ∈ D, either a ≤T b or
b ≤T a)? What about well-ordered?

3 If D is not totally ordered, how many incomparable elements
are there?

4 Is D dense? If not, are there minimal elements (above 0)?

Aiden Sagerman

A Taste of Recursion Theory



Preliminaries Constructing an Uncomputable Set Oracles and Turing Equivalence The Structure of D

What Do We Know About D?

What do we not know about D?

1 Is D finite or infinite? Countable or uncountable?

2 Is D totally ordered (for every a,b ∈ D, either a ≤T b or
b ≤T a)? What about well-ordered?

3 If D is not totally ordered, how many incomparable elements
are there?

4 Is D dense? If not, are there minimal elements (above 0)?

Aiden Sagerman

A Taste of Recursion Theory



Preliminaries Constructing an Uncomputable Set Oracles and Turing Equivalence The Structure of D

What Do We Know About D?

What do we not know about D?

1 Is D finite or infinite? Countable or uncountable?

2 Is D totally ordered (for every a,b ∈ D, either a ≤T b or
b ≤T a)? What about well-ordered?

3 If D is not totally ordered, how many incomparable elements
are there?

4 Is D dense? If not, are there minimal elements (above 0)?
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The Jump Operator

Definition

Given A ⊆ ω, the jump of A, written A′, is the set
{e ∈ ω : {e}A(e) ↓}.
Note that K from before is in fact ∅′.

Theorem

The jump operator is well-defined on degrees. That is, if A,B ∈ a,
then A′ ≡T B′.

This means that we can generate infinitely many degrees by taking
0,0′,0′′, . . . .
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Incomparable Degrees

Theorem

There exist two incomparable degrees. That is, there exist two
degrees a,b ∈ D such that a 6≤T b and b 6≤T a.

Remark

It is sufficient to show that there are two sets A,B ⊆ ω such that
A 6≤T B and A 6≤T B. This is equivalent to saying that for each
program Pe, Pe doesn’t compute A from B or B from A. We can
think of this as two lists of infinitely many requirements that A
and B have to satisfy:

1 Re: A 6= {e}B

2 R′
e: B 6= {e}A
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Incomparable Degrees

Proof Sketch.

0 1 2 . . .

A0 0 0 0 . . .

B0 0 0 0 . . .
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Incomparable Degrees

Proof Sketch.

0 1 2 . . .

A0 0 0 0 . . .

B0 0 0 0 . . .

Is there some finite set σ ⊇ B0 such that {0}σ(0) = 1 or 0?
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Incomparable Degrees

Proof Sketch.

If yes, we make sure A1 does the opposite, and make B1 into that
σ.

For example, let’s say that σ = {0, 2}, and it converges to 0. Then
we alter A0.

0 1 2 . . .

A1 1 0 0 . . .

B1 1 0 1 . . .

This ensures that P1 won’t compute the if 0 ∈ A correctly from
B.
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Incomparable Degrees

Proof Sketch.

If not, it doesn’t matter, and we can just leave A1 and B1 as is.

0 1 2 . . .

A1 0 0 0 . . .

B1 0 0 0 . . .

This is because nothing we could possibly do to B will allow P0 to
compute if 0 ∈ A.
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Incomparable Degrees

Proof Sketch.

Then we look at B1, and do the same thing!

0 1 2 3 . . .

A1 1 0 0 0 . . .

B1 1 0 1 0 . . .

Assuming the first case, the first unused element of B is 3, so we
would ask: Is there some finite set σ ⊇ A1 such that {0}σ(3) = 1
or 0?
By looking at the answers to these two questions, we’re ensuring
R0 and R′

0.
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Incomparable Degrees

Proof.

We will build our sets in stages. At each stage, we start with two
finite sets As and Bs, and extend them to As+1 and Bs+1. On
stage s+ 1, we will make sure Rs and R′

s are satisfied.

1 Start with A0 = B0 = ∅.
2 Suppose we are on stage s+ 1. Let xs+1 denote the first

number not yet added to As. Then we ask the question:
“Does there exist some set σ such that Bs ⊆ σ and
{s}σ(xs+1) ↓ to 1 or 0?”
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Incomparable Degrees

Proof.

2 If the answer to the question is “yes,” then we can make
Bs+1 = σ, and extend As with either 0 if it converges to 1 or
1 otherwise.

3 Then we do the exact same process, but exchanging the role
of As and Bs.

Since we ensured R0 and R′
0 on step 1, R1 and R′

1 on step 2,. . . ,
we know that A and B will be incomparable!
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Other Structure Results

Using similar (and sometimes more complicated) tools, we can
show the following:

1 For any degree a >T 0, there is a b ∈ D such that a and b
are incomparable.

2 There are minimal degrees—that is, degrees a ∈ D such that
there exist no b with 0 <T b <T a.

3 For any degree b >T 0′, there exists a degree a such that
a′ = b.

4 There exists a set of 2ℵ0 incomparable degrees.
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